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Abstract
A detailed analysis of muon-spin rotation (μSR) spectra in the vortex state of type-II
superconductors using different theoretical models is presented. Analytical approximations of
the London and Ginzburg–Landau (GL) models, as well as an exact solution of the GL model
were used. The limits of the validity of these models and the reliability for extracting
parameters such as the magnetic penetration depth λ and the coherence length ξ from the
experimental μSR spectra were investigated. The analysis of the simulated μSR spectra showed
that at high magnetic fields there is a strong correlation between λ and ξ obtained for any value
of the Ginzburg–Landau parameter κ = λ/ξ . The smaller the applied magnetic field, the
smaller the possibility of finding the correct value of ξ . A simultaneous determination of λ and
ξ without any restrictions is very problematic, regardless of the model used to describe the
vortex state. It was found that for extreme type-II superconductors and low magnetic fields, the
fitted value of λ is practically independent of ξ . The second-moment method frequently used to
analyze μSR spectra by means of a multi-component Gaussian fit generally yields reliable
values of λ over the whole range of applied fields Hc1 � H � Hc2 (Hc1 and Hc2 are the first
and second critical fields, respectively). These results are also relevant for the interpretation of
small-angle neutron scattering experiments on the vortex state in type-II superconductors.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The muon-spin rotation (μSR) technique is one of the most
powerful and unique tools for studying the internal magnetic
field distribution P(B) associated with the vortex lattice in
type-II superconductors (see e.g. [1–3]). In the vortex state for
an applied magnetic field H > Hc1, or B > 0 (Hc1 and B are
the first critical field and the magnetic induction in a sample,
respectively) [4] the energy of the surface separating normal
and superconducting fractions of the sample becomes negative
and the field penetrates the sample in the form of quantized flux
lines, called vortices, each of them containing an elementary
flux quantum (�0 = h/2e � 2.0678 × 10−15 Wb) [5]. In

the case of small pinning these vortices arrange themselves
in a regular vortex lattice called a flux-line lattice (FLL) [5].
The distribution of the internal magnetic fields P(B) inside
the superconducting sample in the vortex state is uniquely
determined by two characteristic lengths, the magnetic field
penetration depth λ and the coherence length ξ . From μSR
experiments, P(B) profiles are obtained by performing a
Fourier transformation of the μSR time spectra. There are
different approaches for analyzing μSR data. Generally,
the magnetic field penetration depth λ is determined from
the second moment 〈�B2〉 of the internal field distribution
P(B) [6–12]. For an isotropic extreme type-II superconductor
(λ � ξ ) it was shown that 〈�B2〉 ∝ λ−4 [13]. The more
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advanced approaches that allow one to obtain not only λ, but
also the coherence length ξ require a theoretical model for the
spatial variation of the internal magnetic field B(r) (r is spatial
coordinate). An essential requirement of the model is that it
must account for the finite size of the vortex cores. So far,
the internal magnetic field distribution P(B) measured using
μSR has been analyzed assuming analytical models for B(r)
based on London and Ginzburg–Landau (GL) theories. The
London theory provides the simplest approach for modeling
the FLL. Since London theory does not account for the finite
size of the vortex cores, a cut-off factor derived from GL
theory must be inserted into the analytical London expression
for B(r) to correct for the divergence of B(r) in the vortex
core [14, 3]. The GL theory has the spatial dependence of the
order parameter built in and thus provides a phenomenological
description of the magnetic field profile in the vortex core
region. Abrikosov [5] predicted the vortex core state from a
periodic solution of the GL equations near the second critical
field Bc2 = μ0 Hc2 and provided an approximate analytical
solution of these equations for an isolated vortex for fields of
the order of Hc1. Clem [15] proposed a variational method
for solving the GL equations that was further extended by Hao
et al [16]. A simplified version of this model for λ/ξ � 1
was developed by Yaouanc et al [14], and is often used in the
literature [3].

The London and the GL models were widely applied
to determine values of λ and ξ from measured μSR time
spectra taken in the mixed state of type-II superconduc-
tors [17, 14, 18, 3, 19–31]. We should emphasize, however,
that despite the broad usage, the limits of validity of these mod-
els and the reliability of the parameters extracted from the fits
are not much discussed in the literature. The main purpose
of the present paper is to address these basic questions. The
paper is divided into two parts. In the first part we briefly de-
scribe the models often used for the analysis of μSR spectra:
the London model with Gaussian cut-off (LG model), the mod-
ified London model (ML model), and the analytical Ginzburg–
Landau model (AGL model). These models are compared
with the most precise model based on the iterative method for
solving the Ginzburg–Landau equations developed recently by
Brandt [4], the so called numerical Ginzburg–Landau model
(NGL model). P(B) profiles for various sets of λ, ξ , and mag-
netic field B were first simulated by means of the NGL model
and then analyzed within the framework of the LG, ML, and
AGL models. For further discussions, it is convenient to define
the reduced magnetic field b = B/Bc2. It was found that the
ML model can be used only for low magnetic fields (b � 0.1),
while both the AGL model and the LG model yield reliable re-
sults over almost the whole magnetic field range. However, the
values of λ and ξ obtained by means of the AGL and the LG
model deviate systematically from the initial parameters used
for the simulated P(B) profiles for magnetic fields in the range
0.01 � b � 1. It was also shown that for b � 0.01 the P(B)

profiles do not depend on the coherence length ξ . In the second
part of the paper we present a systematic analysis of simulated
μSR time spectra (with typical statistics used in real μSR ex-
periments) by means of the LG model. Over the whole field
range (0 < b � 1) and for any values of the Ginzburg–Landau

parameter κ = λ/ξ there is a strong correlation between the
values of λ and ξ determined from the fit. This implies that
an analysis of μSR data using this approach, without taking
into account these correlations, may lead to substantial errors
in the determination of the absolute values of λ and ξ , and even
may result in unphysical dependences of λ and ξ on magnetic
field and temperature. In addition, the second-moment method
applied to a multiple-Gaussian fit was tested in order to check
how reliably the penetration depth λ can be determined by this
method. In particular, the influence of the number of Gaus-
sians used in the multi-Gaussian fit on the quality of the fit was
investigated. For typical statistics used in the experiment and
practically over the whole field range (0 < b � 1), the second-
moment method applied to a multi-Gaussian fit may provide
correct values for λ within a few per cent.

The paper is organized as follows. In section 2 various
theoretical models used to analyze μSR data are briefly
described. The dependence of the magnetic field distribution
P(B) on λ, ξ , b, and the Gaussian smearing parameter σg,
as calculated within the LG model, is discussed in section 3.
In section 4 we compare the results obtained by means of the
models described in section 2 for the case of an extreme type-
II superconductor (κ = λ/ξ � 1). Section 5 comprises the
studies of the simulated μSR data. The simulated μSR spectra
were analyzed by means of the various models described in
section 2 in order to search for possible correlations between
the parameters, such as λ, ξ , and σg. The conclusions follow in
section 6.

2. Models for data analysis

As mentioned in section 1, the simplest and the most widely
used approach for analyzing μSR data is based on the relation
between the magnetic penetration depth λ and the second
moment 〈�B2〉 of the internal field distribution Pid(B) of the
ideal FLL [13, 4, 32]:

λ−4 = C〈�B2〉. (1)

Here, C is the proportionality coefficient depending on the
value of the reduced magnetic field b = 〈B〉/Bc2 (〈B〉 is the
first moment of Pid(B)) and the Ginzburg–Landau parameter
κ [13, 4, 32]. In order to estimate 〈�B2〉 one often assumes
that Pid(B) is a sum of N Gaussian distributions (generally,
N = 1, 2, 3) [33, 34]:

Pid(B) = γμ√
2π(A1 + · · · + AN )

×
N∑

i=1

Ai

σi
exp[(B − Bi)

2/2(σi/γμ)2], (2)

where Ai , Bi , and σi/γμ are the weight factor, the first moment,
and the standard deviation of the i th Gaussian component,
respectively. γμ = 2π × 135.5342 MHz T−1 is the muon
gyromagnetic ratio. The first and second moment of Pid(B)

are then readily obtained [33, 34]:

〈B〉 =
N∑

i=1

Ai Bi

A1 + · · · + AN
, (3)

2
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and

〈�B2〉 =
N∑

i=1

Ai

A1 + · · · + AN

[
(σi/γμ)2 + [Bi − 〈B〉]2

]
.

(4)
With modern computers it became possible to develop

models that allow us to calculate Pid(B) for a FLL as a function
of various parameters, such as magnetic penetration depth,
coherence length, applied magnetic field, and FLL geometry
(rectangular or hexagonal) [35, 17, 3, 4]. The London models
(with different cut-off factors) provide the simplest and fastest
way to calculate Pid(B) for the analysis of μSR data for
κ � 1 [3]. Better approximations of Pid(B) for small values
of κ and fields closer to Bc2 can be obtained using the AGL
model [16, 14]. Strictly speaking, Ginzburg–Landau theory is
only valid in the neighborhood of the phase boundary Tc(B) of
a type-II superconductor. However, it is generally assumed that
Ginzburg–Landau models are also good approximations for
any field and temperature. The results obtained using the NGL
model correspond to the minimum of the Ginzburg–Landau
free energy, whereas other models described in this paper are
just approximations to the NGL model. Therefore, the NGL
model will be used as a reference for comparison with the
AGL, ML, and LG models. A relatively simple method for
calculating Pid(B) within the framework of the NGL model
was proposed by Brandt [36, 4].

In the LG, ML, AGL, and NGL approximations the spatial
distribution of the magnetic field in the mixed state of a type-II
superconductor is described using the Fourier expansion:

B(r) = 〈B〉
∑

G

exp(−iGr) BG(λ, ξ). (5)

Here, r is the vector coordinate in a plane perpendicular
to the applied field. The origin of the coordinate system
is in the center of a vortex core (see e.g. [29]), G =
4π/

√
3a(m

√
3/2, n + m/2) are the reciprocal lattice vectors

for the hexagonal FLL, a is the intervortex distance, BG are the
Fourier components, and m, n are integer numbers. For the LG
model the Fourier components BG are [35, 3]

BG = e−ξ 2G2/2

1 + G2λ2
. (6)

For the ML model the Fourier components BG are given
by [17, 3]

BG = e−ξ 2G2/2(1−b)

1 + G2λ2/(1 − b)
, (7)

For the AGL model the Fourier components BG are [16, 14]

BG = �0

S

f∞K1[ ξv

λ
( f 2∞ + λ2G2)1/2]

( f 2∞ + λ2G2)1/2K1(
ξv

λ
f∞)

, (8)

where f∞ = 1 − b4, and

ξv = ξ

(√
2 − 0.75

κ

)
(1 + b4)1/2[1 − 2b(1 − b)2]1/2.

Here, K1(x) is the modified Bessel function. For applied
magnetic fields H � Hc1 the relation μ0 H � 〈B〉

holds [36]. Finally, for the NGL model no analytical solution
for the Fourier components BG exists. They are determined
numerically [36, 4].

From the known spatial distribution of the magnetic field
B(r) in the mixed state one can extract the internal magnetic
field distribution Pid(B) for the ideal FLL by means of the
following equation:

Pid(B) =
∫

δ(B − B ′) dA(B ′)∫
dA(B ′)

, (9)

where dA(B ′) is the elementary area of the FLL with a
field B ′ inside, and the integration is over a quarter of the
FLL unit cell [29]. In order to take into account possible
random deviations of the flux core positions from their ideal
ones (vortex disorder) and/or possible broadening of the μSR
spectra due to nuclear depolarization, one may convolute the
ideal distribution Pid(B) with a Gaussian distribution [35]:

P(B) = 1√
2πσg

∫
Pid(B ′) exp

[
−1

2

(
B − B ′

σg

)2
]

dB ′,

(10)
where σg is the width of the Gaussian distribution. The relation
between σg, vortex disorder, and nuclear depolarization is
described in section 3.4.

The μSR time spectra can be further simulated by
performing the Fourier transform of P(B) convoluted with the
Gaussian function given in equation (10):

P̃(t) = Aeiφ
∫

P(B)eiγμ Bt dB, (11)

where A and φ are the initial asymmetry and the phase of the
μSR time spectra, respectively. For the calculations of the
spatial magnetic field distribution B(r) in the FLL 31 × 31
Fourier components of the magnetic field and the reciprocal
vector G were used. This allows one to calculate the second
moment of P(B) with a precision of better than 10−6. The
integral in equation (9) was calculated numerically over a
quarter of the FLL unit cell, divided into approximately 100 ×
100 equal pixels, depending on the mean magnetic field 〈B〉
(see figure 1 of [29]).

Equations (5)–(8) are only valid for isotropic supercon-
ductors or superconductors with axial symmetry with the ex-
ternal magnetic field applied along the symmetry axis. In the
present study we mostly concentrate on the case of extreme
type-II superconductors (κ � 1), such as the cuprate high
temperature superconductors. Since the qualitative behavior
of Pid(B) as a function of various parameters is essentially the
same for a hexagonal and a square FFL, we will consider here
only the hexagonal case.

In figure 1 we plot the spatial distribution of the magnetic
field B(r) in the mixed state and the corresponding local
magnetic field distribution Pid(B) for λ = 50 nm, ξ = 20
nm, and 〈B〉 = 0.3Bc2 � 246.8 mT, as determined by the
NGL model. The ideal FLL has three characteristic fields:
(i) the maximal field Bmax corresponds to the field in the
vortex core, (ii) the field at the peak of Pid(B) is the saddle
point field Bsad (located in the middle between neighboring

3
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Figure 1. Example of a spatial distribution of the magnetic field B(r)
and the corresponding local magnetic field distribution Pid(B) for an
ideal hexagonal FLL determined by the NGL method. The
parameters used for the calculations are λ = 50 nm, ξ = 20 nm, and
〈B〉 = 0.3Bc2 � 246.8 mT, and intervortex distance a = 69.5 nm.

vortices), and (iii) the minimal field Bmin is in the center of the
triangle of vortices forming the hexagonal FLL4. Instead of the
full local magnetic field distribution Pid(B) we will use these
characteristic fields to discuss the dependence of the shape of
Pid(B) on different parameters.

3. Dependence of P(B) on λ, ξ, 〈B〉, and σg

In this section we concentrate on the analysis of the shape
of P(B) given in equation (10) as a function of penetration
depth λ (section 3.1), coherence length ξ (section 3.2), mean
magnetic field 〈B〉 (section 3.3), and Gaussian smearing width
σg (section 3.4).

3.1. Dependence of Pid(B) on λ

In figure 2 we show examples of the magnetic field distribution
Pid(B) for different values of the magnetic penetration depth
λ at constant mean field 〈B〉 = 0.3Bc2 = 246.8 mT and
coherence length ξ = 20 nm, as calculated using the NGL
model. The region between the minimal and the mean field
〈B〉 is most important, because the high field tail is usually
below the noise level of experimental μSR spectra and is
generally not observed, especially at low fields and for κ �
1. Our calculations show that the differences between the
characteristic fields and the mean field 〈B〉 are proportional
to 1/λ2. This is in full agreement with the results of Sidorenko
et al [38] who obtained for applied fields Hc1 � H � Hc2 and
κ � 1 (in this case 〈B〉 � μ0 H ) in the London approximation
the following expressions:

δBmin = Bmin − 〈B〉 = −0.79(�0/4πλ2) ln 2, (12)

4 At high fields and low temperatures the minimal and the saddle points are
exchanged and the magnetic field distribution around the vortex core has a
conical shape. See [37] and [35].

Figure 2. Local magnetic field distribution Pid(B) for an ideal
hexagonal FLL obtained using the NGL model for different values of
λ, at fixed ξ and applied field Bapp � 〈B〉. The curves are normalized
so that

∫
Pid(B) dB = 1. Note that the shape of Pid(B) strongly

depends on λ.

δBsad = Bsad − 〈B〉 = − 2
3 (�0/4πλ2) ln 2, (13)

δBmax = Bmax − 〈B〉 = 2(�0/4πλ2) ln
a

2
√

2K ξ
. (14)

Here, a is the intervortex distance, and K = K (1/
√

3) �
1.926 is the complete elliptic integral of the first kind [38].
Hereafter, for convenience the quantities δBmin, δBsad, and
δBmax defined above are denoted as characteristic fields as
well. From figure 2 and the pronounced dependence of the
characteristic fields on 1/λ2 it is evident that the μSR time
spectra strongly depend on λ. Therefore, it should be possible
to extract reliable values of λ from experimental μSR data.

3.2. Dependence of Pid (B) on ξ

Figure 3 shows the ξ dependence of the characteristic fields
δBα (α = min, sad, max) normalized to �0/4πλ2 (cf
equations (12)–(14)) for a set of different mean fields 〈B〉, as
obtained using the LG model. All the characteristic fields δBα

disappear at ξ � (�0/2π〈B〉)1/2 (�0 is the flux quantum),
where superconductivity vanishes. Below a certain value of
ξ the characteristic fields δBmin and δBsad are independent of
ξ , whereas δBmax still depends on ξ . However, in real μSR
experiments δBmax cannot be determined out of the noise level
at low 〈B〉. Therefore, at these low values of ξ μSR spectra
are practically independent of ξ . In order to get a feeling
for what this means for cuprate superconductors we assume
ξ � 3 nm, a typical value of ξ for cuprates below Tc/2. In this
case the shape of Pid(B) is almost independent of ξ for fields
〈B〉 � 0.3 T, where δBmin and δBsad saturate (see figure 3). It
is thus difficult to find the correct value of ξ at low magnetic
fields. At higher fields the shape of Pid(B) strongly depends on
ξ . Note that in figure 3 the curves corresponding to the smallest
field (〈B〉 = 0.01 T) exhibit slightly smaller saturation values

4
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Figure 3. ξ dependence of the characteristic fields δBα (α = min,
sad, max) normalized to �0/4πλ2 for a set of different applied
magnetic fields (Bapp � 〈B〉 = 0.01, 0.1, 1, 10 T) as obtained using
the LG model. Note that there is a critical value of ξ below which
δBmin and δBsad are practically independent of ξ . This critical value
depends on 〈B〉.

of the characteristic fields δBmin and δBsad than for the higher
fields. The reason for this is discussed in section 3.3.

As shown by Brandt [36, 4] the ideal internal field
distribution Pid(B) may be expressed using normalized
parameters, depending only on κ = λ/ξ and b = 〈B〉/Bc2.
In a similar way we can plot the curves in figure 3 not as
a function of ξ , but as a function of b = 〈B〉/Bc2, where
Bc2(ξ) = �0/2πξ 2 (the relation obtained from Ginzburg–
Landau theory). This plot is shown in figure 4. All the curves
of figure 3, except the one for the smallest field 〈B〉 = 0.01 T,
fall on the same line.

3.3. Field dependence of Pid(B)

Before we discuss the dependence of the characteristic fields
δBα (α = min, sad, max) on various parameters, it is useful
to define the minimal value of the reduced field bmin =
Bc1/Bc2 � ln κ/2κ2 which is needed to form a regular FLL.
This field corresponds to the limit below which the vortices
can be considered as well separated and noninteracting.

Figure 5 shows δBα (normalized to �0/4πλ2) as a
function of the reduced magnetic field b for different values
of κ , as calculated using the LG model. The arrows at
δBsad correspond to bmin(κ). This figure looks very similar
to figure 4 and represents actually its generalization. It shows
how δBα depends on all three parameters λ, ξ , 〈B〉, and not
only δBα as a function of 〈B〉. Since figure 5 demonstrates
the dependence of δBα on all the parameters it is the basis of

Figure 4. Characteristic fields δBα (α = min, sad, max) of figure 3
plotted as a function of the reduced field b = 〈B〉/Bc2(ξ)
(Bc2(ξ) = �0/2πξ 2) at 〈B〉 = 0.1, 1, and 10 T (black solid line),
and at 0.01 T (blue dotted line). Note that all the curves δBα(ξ) of
figure 3, at 〈B〉 = 0.1, 1, 10 T merge to single curves δBα(b).

all further discussions. At high values of b, the characteristic
fields δBα(〈B〉) and δBα(ξ

2) coincide, but at lower fields they
deviate substantially (dependence of δBα on a parameter x
means that all other parameters, except x , are fixed). The
reason for this is obvious. For b → 0 at constant ξ or Bc2

the intervortex distance a increases, and 〈B〉, δBmin(b), and
δBsad(b) tend to zero as well. This is the reason for the smaller
saturation values of δBα at the lowest field 〈B〉 = 0.01 T in
figure 3. However, in the case of the ξ dependence, when
b → 0 at constant field 〈B〉, only the vortex core size is
reduced, and the intervortex distance a does not change. This
does not have much influence on the internal magnetic field
distribution Pid(B) for κ � 1 (see figure 5). When κ is
reduced, the deviation of δBα(〈B〉) from δBα(〈B〉)κ=∞ starts
at higher values of b. For small values of κ the characteristic
fields δBα(〈B〉) do not even reach saturated values as in the
case of high κ and small b. Despite the similarity of δBα(〈B〉)
and δBα(ξ

2), the mean field 〈B〉 can easily be extracted from
the fit (unlike ξ ), since it defines the oscillation frequency of
the μSR time spectrum.

3.4. Dependence of P(B) on σg

In reality the internal magnetic field distribution in the mixed
state of a type-II superconductor is influenced by several
factors, which generally lead to an additional broadening of
Pid(B). (i) The FLL is never ideal, but disordered by random
pinning effects of the vortex cores. (ii) For powder samples
of anisotropic superconductors—such as the layered cuprate

5
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Figure 5. Characteristic fields δBα (α = min, sad, max) calculated
using the LG model as a function of the reduced field b (dashed,
dotted and dash–dotted lines) for different values of κ . The black
solid lines represent the curves δBα(ξ) shown in figure 4 for
〈B〉 = 0.1, 1, and 10 T. The arrows indicate the values of bmin at
which 〈B〉 = Bc1.

superconductors—the grains usually have random shapes, and
therefore have anisotropic superconducting properties and
demagnetization effects play a role [33]. (iii) The sample
may contain magnetic nuclear moments or paramagnetic
impurities. Vortex disorder and nuclear broadening can be
taken into account by convoluting the ideal internal field
distribution Pid(B) with a Gaussian distribution of width (see
equation (10)) [35, 17, 39]

σg =
√

σ 2
VD + σ 2

N, (15)

where σVD and σN are the contributions to the Gaussian
broadening of Pid(B) due to vortex disorder and nuclear
depolarization, respectively5. For κ � 1 the standard
deviation of the vortex core positions from the ideal positions
in the FLL 〈s2〉1/2 is related to σVD by the following
equation [17]:

σVD ∝ λ−2(1 − b)

〈
s2

〉1/2

a
. (16)

Here b = 〈B〉/Bc2, and a is the intervortex distance.
Figure 6 shows examples of P(B) for λ = 200 nm,

ξ = 4 nm, 〈B〉 = 0.1 T, and for various values of σg, calculated
by means of the LG model. It is obvious that with increasing

5 For powder samples with a Gaussian distribution of the first moments 〈B〉
due to Gaussian distribution of demagnetization factors N one may add an
additional term σ 2〈B〉 to equation (15).

Figure 6. Change of the local magnetic field distribution Pid(B) for
an ideal FLL after convolution with a Gaussian distribution of various
widths σg. The following parameters were used to generate Pid(B)
with the LG model: λ = 200 nm, ξ = 4 nm, and 〈B〉 = 100 mT.

degree of disorder the Van Hove singularities in the ideal
internal field distribution Pid(B) are smeared out. Note that
the low field part of Pid(B) is mainly truncated by the Gaussian
smearing, whereas the high field tail is nearly unaffected.

4. Comparison of different models

In this section the different models (LG, ML, AGL, and NGL)
discussed in this work are compared. For this purpose the
NGL model is used as a reference model for describing the
mixed state of a type-II superconductor. In section 2 we
showed that the characteristic fields δBα for κ � 1 may be
represented by single curves (see figure 5). Figure 7 shows the
characteristic fields δBα as a function of the reduced magnetic
field b = 〈B〉/Bc2 in the limit of κ → ∞ as calculated
using the LG, ML, AGL, and NGL models. For small b values
δBmin(b) and δBsad(b) coincide for all models. Deviations of
the AGL and LG models from the NGL model appear above
b ≈ 0.01. Although the AGL and LG models may fit well
the μSR spectra simulated using the NGL model, the fitted
values of ξ may deviate substantially from the real values for
reduced magnetic fields b � 10−2. This systematic deviation
increases with increasing magnetic field. For the LG model, in
contrast to the AGL model, the systematic errors even change
sign with increasing magnetic field. One should note that for
κ > 5 there is no advantage of using the AGL model instead of
the LG model. Of all the models the ML model approximates
best the NGL model up to about b � 0.1, in agreement with
previous results of Brandt [13]. However, at higher fields
this model substantially deviates from the NGL model. The
ML model has often been used to analyze experimental data
for b > 0.1 [3, 29]. We found that μSR spectra simulated
using the NGL model in the range b = 0.1–1 may well be
fitted with the ML model. But for b > 0.1 the values of
ξ extracted from the simulated μSR spectra are artificially
reduced compared to the real values of ξ (see figure 7). For

6



J. Phys.: Condens. Matter 21 (2009) 075701 A Maisuradze et al

Figure 7. Characteristic fields δBα (α = min, sad, max) as a
function of the reduced field b = 2π〈B〉ξ 2/�0 for κ = ∞, as
calculated using the LG, ML, AGL, and NGL models.

smaller values of κ , the characteristic fields δBα for the ML,
AGL, and NGL models behave similarly to those of the LG
model (see figure 5). Namely, for high reduced fields b all the
curves with different values of κ coincide. The smaller κ , the
higher the reduced field b when they start to deviate from the
curves shown in figure 7. The only exception is for the AGL
model, for which for κ � 5 the curves become closer to the
NGL curves. Here we should mention that our results obtained
with the NGL model are in full agreement with the calculations
of Brandt [4].

5. Simulation and fitting of μSR spectra

In order to check the conclusions we reached in the previous
sections ‘experimentally’, μSR time spectra with known
parameters (〈B〉, λ, ξ, σg) were simulated using the LG and
NGL models. For the simulation of the μSR experiment a
transverse field (TF) configuration with two positron detectors
D1 and D2 located on opposite sides of the sample was
used. The number of positrons detected by the detector D1
at time ti = i�t is N1(ti )�t (i = 1, 2, . . . , 8000; �t
was chosen to be 1.25 ns, corresponding to a typical time
resolution for the GPS spectrometer at the Paul Scherrer
Institute, Switzerland). This positron count number obeys
Poisson statistics, and the standard deviation is simply given
by

√
N1(ti )�t . In the ideal case of no noise, the detector D1

would detect the signal n1(ti) = n0e−ti /τμ [1 + P(ti )], where
n0 is a constant depending on the number of muons detected
(statistics) and the time interval �t , τμ = 2.197 019(21) μs
is the muon lifetime, and P(ti ) is the noiseless μSR time
signal (see equation (11)) to which noise has to be added. The

signal monitored by detector D1 can be simulated using the
equation N1(ti ) = n1(ti ) + √

n1(ti )gi , where gi is a random
number generator obeying Gaussian statistics with standard
deviation and variance equal to 1. A similar signal but with
opposite phase is registered by detector D2. In analogy to
real μSR experiments one can calculate the asymmetry [1, 3]
A(ti) = [N1(ti)−N2(ti)]/[N1(ti)+N2(ti)], yielding P(ti ) with
‘experimental noise’. The μSR time spectra were simulated
according to the procedure described above with total statistics
of 20 million events, a value typically used in real experiments.

The simulated μSR time spectra were then analyzed as
follows.

(1) The μSR spectra simulated using the NGL model were
analyzed by the second-moment (SM) method.

(2) The μSR spectra simulated using the LG model were
analyzed using a fitting procedure based on the LG model.

According to the discussions in the previous sections the
following important questions emerge.

(1) How reliable is the second moment obtained using a multi-
Gaussian fit of the μSR spectra (see equation (17)) and the
value of the penetration depth λ extracted from the second
moment?

(2) Is there a correlation between σg and 1/λ2, since both of
them influence the second moment of the μSR spectrum?

(3) Is it possible to extract reliable values of ξ from μSR
spectra at low magnetic fields b � 10−3?

(4) Is there a correlation between λ and ξ at high fields (since
for b ≈ 0.1–0.9 both parameters strongly influence the
characteristic fields δBα)?

5.1. Test of the second-moment method

In this section the second-moment (SM) method is tested by
analyzing μSR time spectra simulated using the NGL model
with well defined parameters (〈B〉, λ, ξ, σg). The SM method
is theoretically well described in the literature [13, 38, 4] and
was extensively used to extract the magnetic penetration depths
of extreme type-II superconductors from μSR spectra [6–12].
In the framework of this method the μSR time spectra are
usually fitted to a sum of N Gaussian components [33, 34]:

P(t) =
N∑

i=1

Ai exp(−σ 2
i t2/2) cos(γμ Bi t + φ). (17)

Here φ is initial phase of the muon beam, and Ai , σi , and Bi

are the asymmetry, the relaxation rate, and the first moment
of the i th Gaussian component, respectively. From the fit
parameters Ai , σi , and Bi one readily obtains the first and
the second moment of P(B) from equations (3) and (4),
respectively. Using equation (1) one finds the penetration
depth λ. Here a serious question arises: How reliable is the
value of λ obtained by the SM method using a multi-Gaussian
fit? In order to investigate this question μSR time spectra
were simulated using the NGL model for an extreme type-II
superconductor (such as the cuprate superconductors) with a
Ginzburg–Landau parameter κ = 50 � 1. The temperature
dependence of λ was assumed to follow the relation (two-fluid
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model) λ(T )−2/λ(0)−2 = [1−(T/Tc)
4] with Tc = 22.5 K and

λ(0) = 200 nm (zero-temperature penetration depth). This
approximately corresponds to the temperature dependence of
λ in the strong-coupling BCS case [40]. In the first step we
assume that there is no vortex disorder (σVD = 0) and no
nuclear depolarization (σN = 0) present (cf equation (15)). The
simulations were performed for three different magnetic fields:
〈B〉 = 0.05, 0.5, and 5 T.6 This corresponds to the reduced
fields b = 0.0024, 0.024, and 0.24, an extremely small,
an intermediate, and a high magnetic field, respectively (see
figure 5). Since Bc2 is decreasing with increasing temperature
(1/ξ 2 ∝ Bc2; 1/ξ 2 ∝ 1/λ2 at constant κ), the analysis of
the μSR spectra for B = 5 T makes sense only up to 21 K
where Bc2(21 K) ≈ 〈B〉 and superconductivity disappears.
Noisy μSR time spectra were simulated using the parameters
λ, ξ , and 〈B〉 as described above. For the technical parameters
the following typical values were used: statistics 20 × 106,
asymmetry A = 0.2, and phase φ = 0.

For the analysis of the simulated μSR spectra, P(t) in
equation (17) was approximated by a sum of N = 1, 2, 3, 4, 5
Gaussians in order to check the reliability of the result obtained
using a multi-Gaussian fit. The number of Gaussians N
determines the quality of the fit. N should be increased
from 1 until χ2 (normalized to the degrees of freedom) is
close to 1 within statistical scattering. The total asymmetry
A = ∑N

i=1 Ai and the phase φ of P(t) in equation (17) were
assumed to be known and were fixed in the fitting procedure.
According to our experience, in order to reduce the scattering
of the fitted values of the second moment, one should fix the
asymmetries Ai of the individual Gaussians to their average
values obtained using a fit with all parameters free. From the
first and the second moments of the individual Gaussians one
can calculate the second moment 〈�B2〉 of the μSR spectrum
using equation (4), which corresponds to the second moment
of Pid(B) of an ideal FLL. The magnetic penetration depth λ

is readily obtained from 〈�B2〉 with equation (1). The result
of the analysis of the simulated μSR time spectra for an ideal
FLL is shown in figure 8. For the 0.05 T data the finite value
of κ = 50 was taken into account in the coefficient C in
equation (1) [4]. One can see that the smaller the field, the
greater the number of Gaussians N needed to describe the
spectra. Whereas for 5 T N = 2, 3 Gaussians are sufficient
for reproducing the spectra, N = 4 and N = 5 are required
for 0.5 and 0.05 T, respectively. Note that the scattering of
the data points increases with increasing number of Gaussians
N . Although at 0.05 T the fitted values of 1/λ2 deviate
systematically from the real values by a few per cent, the
qualitative behavior of 1/λ2(T ) is the same. As will be shown
below by adding a Gaussian smearing σg to the μSR spectra,
the scattering is reduced, and a smaller number of Gaussians N
are needed to describe the spectra. Figure 9 demonstrates how

6 In a real μSR experiment with a time binning �t = 1.25 ns the maximal
possible field for a measurement is 2.95 T (this corresponds to two binnings
per precession period). At higher fields the asymmetry of the signal drops. In
our simulations, unlike in experiments, we do not integrate the positron counts
within the time interval �t , but simulate the detector counts at ti = i�t . For
this reason it is possible to simulate and fit μSR data at higher fields due to the
stroboscopic effect. In this case the absolute value of the real field is the fitted
field plus N × 2.95 T, where N is a positive integer number.

Figure 8. Fit results for λ−2 obtained by the second-moment method.
The noisy spectra for the three different fields of 0.05, 0.5, and 5 T
were simulated using the NGL method for an ideal FLL as described
in the text, and then analyzed using a multi-Gaussian function with
different number of Gaussians (N = 1, 2, 3, 4, 5) as defined in
equation (17). The black solid lines correspond to the real values of
λ−2 used for the simulation.

the local magnetic field distribution Pid(B) for an ideal FLL
can be approximated by N = 5 Gaussians. Although not all
the details of Pid(B) are reproduced, the overall agreement is
good, in particular the second moment.

In order to test the second-moment method under more
realistic conditions one should add a Gaussian smearing σg to
the μSR spectra (cf equation (10)). According to equation (15),
we assume for the further discussions that σg is composed of
two components: σg = (σ 2

VD + σ 2
N)1/2, where σVD denotes the

temperature dependent smearing due to vortex disorder, and
σN is the temperature independent smearing due to nuclear
depolarization (cf equation (16)). For a constant vortex
disorder 〈s2〉1/2/a = const. (rigid vortex lattice) and reduced
field b, the relation σVD ∝ 1/λ2 holds. As is obvious from
equation (16), for 〈B〉 = 5 T the term (1 − b) = 0.76
substantially deviates from unity and has to be taken into
account in the simulation of μSR data.

For the simulations of the smeared μSR spectra the
following values for single-crystal La1.83Sr0.17CuO4−δ were
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Figure 9. Comparison of the ideal field distribution Pid(B) simulated
using the NGL model at 0.5 T and 1 K (blue solid line) with P(B)
obtained using a Gaussian fit with N = 5 (red dashed line). The five
individual Gaussian components used for the fit are also shown
(black dotted lines). The inset shows the same plot but on a
semi-logarithmic scale.

used: σVD = β/λ2, β = 2.585 × 104 (mT nm2) and σN =
σCu = 0.27 mT [41]. Noisy μSR time spectra were simulated
using the parameters λ, ξ , 〈B〉, and σg as described above.
For the technical parameters the following typical values were
used: statistics 20 × 106, asymmetry A = 0.2, and phase
φ = 0.

The total second moment 〈�B2〉t of a μSR spectrum
with Gaussian smearing σg obtained using a multi-Gaussian
fit contains three components:

〈�B2〉t = 〈�B2〉 + σ 2
VD + σ 2

N, (18)

where 〈�B2〉, σ 2
VD, and σ 2

N are the second moments due to the
internal field variation in the ideal FLL, the vortex disorder,
and the nuclear depolarization, respectively. In order to obtain
λ from the total second moment measured in real experiments
one determines σN above Tc, and assumes that σ 2

VD � 〈�B2〉
in equation (18), i.e. 〈�B2〉t � 〈�B2〉 + σ 2

N [42]. From
the first and the second moments of the individual Gaussians
one can calculate the total second moment 〈�B2〉t of the μSR
spectrum using equation (4) (note that in equation (4) 〈�B2〉
has to be replaced by 〈�B2〉t for the case σg = 0). By means
of equations (18) and (1) the magnetic penetration depth λ

then is readily obtained. Figure 10 shows the results for the
penetration depth obtained by the second-moment method with
N = 1, 2, 3, 4 Gaussians. Note that a single Gaussian does
not give reliable results in agreement with earlier findings [33].
However, with increasing number of Gaussians N the quality
of the fits substantially improves. In order to fit the simulated
data at 0.05 T at least three or, better, four Gaussians are
required. For N = 3 there is a systematic deviation of about
10% of λ−2 from the real value (or 5% for λ), whereas for N =
4 the values of λ−2 are scattered within a few per cent around

Figure 10. Fit results for λ−2 obtained by the second-moment
method. The noisy spectra for the three different fields of 0.05, 0.5,
and 5 T were simulated using the NGL method including Gaussian
smearing σg as described in the text, and then analyzed using a
multi-Gaussian function with different numbers of Gaussians
(N = 1, 2, 3, 4), as defined in equation (17). The black solid lines
correspond to the real values of λ−2 used for the simulation.

the real ones. For the data simulated at 0.5 T even N = 3
Gaussians are sufficient for describing the local magnetic field
distribution P(B), and the values of λ−2 are systematically
shifted only within a few per cent. Figure 11 shows an example
of a real internal field distribution P(B) (〈B〉 = 0.5 T, T =
1 K of figure 10) and the reconstructed P(B) obtained from
the analysis of the simulated μSR spectrum (2 × 107 statistics)
using a Gaussian fit with N = 3. It is obvious that three
Gaussians describe well the shape of the real P(B). The largest
systematic error in λ−2 obtained using a multi-Gaussian fit is
observed at 5 T (b = 0.24). At such a high field (〈B〉 �
Bc2/4) the variation of the internal field is relatively small (see
figure 7), and the Gaussian smearing σVD (cf equation (18)) due
to vortex disorder becomes essential. The second moment of
this Gaussian smearing cannot be neglected and considerably
contributes to the total second moment 〈�B2〉t of P(B). This
leads to systematically higher values of λ−2 obtained using
multi-Gaussian fits at high magnetic fields. Note, however,
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Figure 11. Comparison of the real field distribution P(B) (empty
circles) simulated using the NGL model for parameters λ = 200 nm,
ξ = 4 nm, 〈B〉 = 0.5 T, σg = 0.7 mT (the data point at T = 1 K for
N = 3 in figure 10(b)) with P(B) obtained using a Gaussian fit with
N = 3 (red solid line). The dotted, dashed, and dash–dotted lines
represent individual Gaussian components used for the fit. It is
obvious that a multi-Gaussian fit may well describe the real P(B).

that there are two reasons why the contribution to the second
moment due to vortex disorder is reduced with increasing
magnetic field, and consequently the systematic error in λ−2.
(1) At high fields σVD ∝ (1 − b) (cf equation (16)), which
was taken into account in the simulations of the μSR spectra.
(2) Vortex disorder, 〈s2〉1/2/a, is expected to decrease with
increasing magnetic field, because of the strong repulsive
interaction between the vortices at high fields (see e.g. [4]).

By means of a multi-Gaussian fit it is not possible to
separate 〈�B2〉 and σVD from the measured total second
moment 〈�B2〉t (cf equation (18)). Assuming that σVD = 0
yields a lower limit for λ (upper limit for 1/λ2), as clearly
demonstrated in figures 10(b) and (c) where the values of 1/λ2

are systematically too large. It is interesting to investigate what
the values of 1/λ2 are after correction with the real value of
σVD. For this purpose we write equation (16) in the form
σVD = βλ−2 and with the help of equations (1) and (18) we
obtain

λ−2 = [C/(1 + ε)]1/2[〈�B2〉t − σ 2
N]1/2, (19)

where ε = Cβ2 is the correction due to vortex disorder. The
values of 1/λ2 plotted in figure 10 were obtained with ε = 0
(no vortex disorder correction). Figure 12 shows some of the
results of figure 10 after correcting the values of 1/λ2 with the
values of εT =0 = 0.050, 0.073, and 0.155 for 0.05 T, 0.5 T, and
5 T, respectively (ε is temperature dependent, since C(b(T ), κ)

is temperature dependent). The corrected values of 1/λ2 are in
good agreement with the real values (solid line in figure 12),
except for the data at 0.05 T where a systematic deviation of
about 5–10% is observed. One of the reasons for this deviation
is that κ = 50 used in the simulations is not infinite. This

Figure 12. Temperature dependence of 1/λ2 determined from
〈�B2〉, assuming that σVD is known as described in the text.
Triangles: N = 4, 0.05 T; stars: N = 4, 0.05 T, corrected for finite
κ = 50 (see the text for an explanation); circles: N = 3, 0.5 T;
squares: N = 3, 5 T.

implies that at 0.05 T (b � 0.0024) the parameter C−1/2 in
equations (1) and (19) is about 5% smaller [4]. The stars
in figure 12 represent the corrected values of 1/λ2 at 0.05 T,
which are only about 3% systematically lower than the real
values.

5.2. Test of the London model with Gaussian cut-off (LG)

In order to test the reliability of the advanced methods
described in section 2 we first simulated noisy μSR spectra
and then fitted them like with the second-moment method.
To avoid systematic errors in the fit results it is important
to analyze the data using the same model as they were
simulated. Here we present results for the LG model, since
it can approximate experimental data well over the whole field
range (see figure 7). Similar results are also obtained with all
other models. The temperature dependence of the penetration
depth λ was assumed to follow the relation λ−2(T )/λ−2(0) =
[1 − (T/Tc)

2] with λ(0) = 200 nm and Tc = 22.5 K. The
Ginzburg–Landau parameter κ = 50, and Gaussian smearing
σg(T ) = (σ 2

VD(T ) + σ 2
N)1/2 [σVD ∝ 1/λ2(T )] was chosen, to

be the same as in section 5.1. Again the μSR spectra were
simulated for three different mean fields 〈B〉 = 0.05, 0.5, and
5 T (b = 0.0024, 0.024, 0.24). As before the mean field
was assumed to be temperature independent. The statistics,
asymmetry, and phase of the μSR time spectra were chosen to
be 20 × 106, 0.2, and 0, respectively.

The results of the fits of the simulated μSR spectra with
all the parameters free (except A and φ) are shown in figure 13.
Phase φ and asymmetry A were assumed to be known and were
fixed to their real values. In order to exclude any artificial
influence on the fitting procedure we performed the fits in
automatic mode. This means that with increasing temperature
the fit results for temperature Ti were used as initial parameters
for the next temperature Ti+1. For T1 (lowest temperature) the
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Figure 13. Summary of the fit results for the μSR spectra simulated
using the LG model. The fitted values 1/λ2, κ , �〈B〉/〈B〉, and σg, as
well as χ2, are plotted as a function of temperature T for three
different fields 0.05 T (circles), 0.5 T (upward-pointing triangles),
and 5 T (downward-pointing triangles) for 20 million statistics. The
parameters 1/λ2, κ , �〈B〉/〈B〉, and σg were free during the fitting
procedure. The solid lines correspond to the true values of the
parameters. �〈B〉/〈B〉 = (〈B〉fit − 〈B〉real)/〈B〉real denotes the
relative deviation of the fitted value 〈B〉fit from the real 〈B〉real. For
comparison χ2 was also determined for the real values of the
parameters (black stars). The black empty diamonds in (a) show a
possible fit result for 1/λ2 at 5 T with extremely wrong initial
parameters. Note that the error bars of 1/λ2, as calculated using the
fitting program (the function ‘fit’ of the MATLAB program was
used), are within the point size (�2%).

correct initial parameters were used. As shown in figure 13
for λ−2 we got good results at low fields; however there
are substantial systematic deviations for κ . At the highest
field there are substantial systematic deviations of the fitted
values for both λ and κ , although the goodness of fit χ2 for

Figure 14. χ2 as a function of ξ for the μSR spectra simulated using
the LG model with 20 million counts, 〈B〉 = 0.05, 0.2, 0.5, and 5 T,
λ = 200 nm, ξ = 4 nm, and σg = 0.7 mT. For comparison χ2(ξ) is
also shown for the higher statistics of 2000 million at 〈B〉 = 0.05 and
0.2 T. The statistically scattered minimal value of χ2 was normalized
to 1. Note that the dependence of χ2 on ξ at low fields is weak.

these fits is comparable to those for the correct parameters
(figure 13). The values of χ2 weighted and normalized to the
degrees of freedom (≈8000) scatter around 1 within 0.04, as
expected for the present degrees of freedom. The black stars
in figure 13 denote χ2 for the true values of the parameters
for comparison. From all the fitted parameters, the values
obtained for κ deviate most from the real ones for all the
fields. In order to check the reason for this strong deviation
for κ at 0.05 T, the fit was performed using different initial
parameters. For λ, 〈B〉, and σg correct values within a few per
cent were obtained, whereas ξ was found to be in the range
2–13 nm with a very good value of χ2. The dependence of
χ2 on ξ for different fields and statistics is demonstrated in
figure 14. It is evident that at low fields and 20 million statistics
the quality of the fit is practically independent of ξ over a
very broad range. For the 5 T data not only κ but also λ

substantially deviates from the real value (see figure 13). The
good agreement at low temperatures is misleading, since it is
only due to the correct initial parameters that we set for the
lowest temperature. The empty black diamonds in figure 13(a)
show the fit result for intentionally extremely wrong starting
parameters. In real measurements one never knows the optimal
starting parameters. We performed fits of the 5 T data at
T = 1 K with different starting values of λ, ξ , 〈B〉, and σg.
It was found that for 〈B〉 and σg one obtains values close to the
real ones; however, for λ and ξ this is not the case. Figure 15
shows the variation of the values of λ and ξ during the fitting
process. The starting values of λ and ξ are indicated by number

. The numbers , , . . ., indicate the values of λ

and ξ after each five fitting iterations. The maximal number
of fitting iterations was not restricted. However, 50 iterations
were usually sufficient, and the fit was terminated when the
relative changes of all the parameters during the iteration were
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Figure 15. Visualization of the fitting process of the simulated μSR
spectrum for the parameters λ = 200 nm, ξ = 4 nm, 〈B〉 = 5 T,
σg = 0.7 mT using the LG model. Number indicates the starting

values for λ and ξ . The numbers , , . . ., denote the values
of λ and ξ after each five iterations of the fitting process. The fit was
terminated when relative changes of all the parameters were less than
10−6. The solid line shows the points in the λ versus ξ plane where
the fit is finally converging. Note that the fit results for the other
parameters 〈B〉 and σg are close to the real ones, independently of the
starting values.

less than 10−6. The final results of the fit eventually correspond
to local minima of χ2. The fit converges on a certain λ = λ(ξ)

curve denoted by the black line in figure 15, indicating a
possible correlation between λ and ξ at high fields. Therefore,
we can conclude that the determination of a reliable value of
ξ is problematic at low fields as expected (see figure 3). At
higher fields not only the value of ξ , but also the value of λ

may systematically deviate from the real value. However, at
low fields reliable values of 〈B〉, σg, and λ may presumably be
well determined from fits with the advanced models.

The next step for improving the fitting procedure is to
restrict some parameters. On the basis of the results obtained
from the free parameter fits we conclude that a good candidate
for restriction is ξ , especially at low fields. One can fix κ

in order to relate ξ to λ via ξ = λ/κ and let the other
parameters λ, 〈B〉, and σg be free. This is also reasonable
from a theoretical point of view. In the BSC approximation
κ does not change substantially with temperature in the weak-
coupling limit [43]. The results of the fits with the only
restricted parameter κ (i.e., ξ was calculated with ξ = λ/κ)
are shown in figure 16. It is obvious that the fits are excellent
and all the parameters are very close to the real ones with only
small statistical scattering.

5.3. Correlation between σg and λ−2 for small values of b

As shown in figure 6, with increasing Gaussian smearing σg the
characteristic fields of the internal magnetic field distribution
Pid(B) of the ideal FLL are gradually washed out, and P(B)

Figure 16. Summary of the fit results for the μSR spectra simulated
using the LG model. The fitted values 1/λ2, �〈B〉/〈B〉, and σg, as
well as χ2, are plotted as a function of temperature T for three
different fields 0.05 T (circles), 0.5 T (upward-pointing triangles),
and 5 T (downward-pointing triangles) for 20 million statistics. The
parameters 1/λ2, �〈B〉/〈B〉, and σg were free during the fitting
procedure, whereas κ was fixed at the real value. The solid lines
correspond to the true values of the parameters.
�〈B〉/〈B〉 = (〈B〉fit − 〈B〉real)/〈B〉real is the relative deviation of the
fitted value 〈B〉fit from the real one 〈B〉real. For comparison χ2 was
also determined for the real values of the parameters (black stars).

tends to become an asymmetric Gaussian-like distribution.
Therefore, one expects some correlation between σg and the
inverse square of the penetration depth 1/λ2, since both of
them influence the second moment of the μSR spectrum. In
order to show the possibility of extracting the real values of
λ and σg from μSR spectra, we simulated μSR data using
the ML model and then calculated the goodness of fit χ2 as
a function of λ and σg with the other parameters fixed to their
true values. Figure 17(a) shows χ2 as a function of λ with the
other parameters fixed to their true values. For the simulated
data the following parameters were used: λ0 = 200 nm,
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Figure 17. (a) χ2 as a function of λ with the other parameters set to the true values. The following parameters were used for the μSR data
simulation: λ0 = 200 nm, ξ0 = 1 nm, b0 = 10−3, 20 million statistics, and σg0 = 0.05, 0.75, and 1.5 mT. (b) Contour plot of χ2 as a function
of λ and σg for the data simulated using λ0 = 200 nm, ξ0 = 1 nm, b0 = 10−3, σg0 = 0.75, and 20 million counts (red point). In both figures
the ML model was used for the calculations, and the statistically scattered minimal value of the χ2 was normalized to 1. The real values of λ
and ξ are indicated by the red point.

ξ0 = 1 nm, b0 = 10−3, σg0 = 0.05, 0.75, 1.5 mT, and
20 million counts. It is evident that with increasing σg0 the
error of λ extracted from the fit increases. Figure 17(b) shows
a contour plot of χ2 as a function of λ and σg calculated for data
with λ0 = 200 nm, ξ0 = 1 nm, b0 = 10−3, σg0 = 0.75, and
20 million statistics. This approximately corresponds to the
case that we analyzed before. From the figure we conclude that
λ−2 and σg are slightly correlated, but it is possible to extract
them simultaneously if ξ is fixed. This agrees well with the
results of the analysis performed in section 5.2.

5.4. Correlation between ξ and λ

For low magnetic fields the dependence of the μSR spectrum
on the coherence length ξ is very weak (see figure 14). But
with field increasing towards Bc2 the shape of the spectrum
becomes dependent not only on the penetration depth λ, but
also on ξ (see figure 7). An increase of λ and/or ξ causes a
decrease of the second moment and the characteristic fields.
Therefore, it is expected that a decrease of λ is correlated with
an increase of ξ in the fitting procedure and vice versa. So far,
to our knowledge, this problem has been discussed previously
only by Riseman et al [17]. Here we study this problem in
more detail. For this procedure we determined χ2 for simulated
μSR data as a function of λ and ξ at fixed 〈B〉0 = 0.5Bc2 and
Gaussian smearing σg0 = 0.5 mT. We have chosen the case of a
relatively small κ0 = 2.5 (λ0 = 50 nm and ξ0 = 20 nm) for the
data simulation, since the relative volume of the vortex cores
is large, and therefore it is easier to extract ξ from the fits. As
before, the statistics were 20 × 106. The result of the analysis
with the NGL model is shown in figure 18, where a contour
plot of χ2 as a function of λ and ξ with the other parameters
fixed is displayed. There is indeed a strong correlation between
λ and ξ . For λ(ξ) ≈ 58.68 + 2.14ξ − 0.127ξ 2, where χ2 � 1
is minimal, the fits converge after a few hundred iterations.

Figure 18. Contour plot of χ2 as a function of λ and ξ for the data
simulated using parameters λ0 = 50 nm, ξ0 = 20 nm, b0 = 0.5,
σg0 = 0.5 mT, and 20 million counts, calculated using the NGL
model. The fitted parameters λ and ξ exhibit a strong correlation,
which is the reason for the pronounced systematic deviations of the
fitted values of λ−2 and κ at 5 T from the real values displayed in
figure 13. The statistically scattered minimal value of χ2 is
normalized to 1. The real values of λ and ξ are indicated by the
red point.

Tests showed that for different starting parameters the fits were
converging in the correlated region of ξ = 14–24 nm and λ ≈
36–63 nm. This region lies within the interval of χ2 < 1.05
(see figure 18). It should be noted that for such a high reduced
field b = 0.5 as was used here for the analysis, the qualitative
dependences of the characteristic fields δBα on λ, ξ , and 〈B〉
are independent of κ = λ/ξ (see figure 5). Therefore the
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qualitative behavior of the contour plot of χ2(λ/λ0, ξ/ξ0) in
figure 18 is independent of κ0 = λ0/ξ0 for any κ0 > 5.

The situation could be improved for fields b � 10−2

where the minimal and saddle point fields slightly depend on
ξ (see figure 7), and on the other hand the maximal field
is not very large and still depends on ξ . However, with
decreasing field, the vortex core volume substantially reduces
which is disadvantageous for the data analysis as discussed
above. Figure 19 shows a similar contour plot of χ2(λ, ξ)

for noisy data simulated using the NGL and ML models with
parameters λ0 = 200 nm, ξ0 = 4 nm (κ0 = 50), σg0 = 0.7 mT,
20 million statistics, and b0 = 0.004, 0.02, and 0.1. This
corresponds approximately to the analysis of the simulated data
that we discussed before. There is a substantial correlation
between λ and ξ at all fields. For b0 = 0.1 the analysis
yields ξ = 4(1) nm (correlated with λ), for b0 = 0.02
only an upper limit of ξ � 5 nm can be given, and for
b0 = 0.004 (0.082 T) the fit is practically independent of ξ at
20 million statistics. However, at unrealistically high statistics
the dependence of χ2 on λ and ξ becomes stronger (see
figure 14), and the precision of the parameters extracted from
the fit increases as the square root of the statistics. Another
way of solving this problem was proposed by Riseman et al
[17]: by simultaneously fitting several spectra measured at
different fields with common values of the parameters λ and
ξ . This has two advantages. (1) It effectively increases the
statistics. (2) Since the correlation curve λ(ξ) changes their
slope with field (see figure 19), the total contour graph of
χ2(λ, ξ) will shrink, allowing a determination of the correct
parameters. For example in the case of a high value of κ and
extremely small field b, one can determine the correct value of
λ (independently of the value of ξ ), and with the known value
of λ it is possible to evaluate a reliable value of ξ at high field
by means of the correlation curve ξ(λ). This procedure can be
justified at least for conventional superconductors. Recently,
Landau and Keller [32] reanalyzed μSR data for various
conventional superconductors and convincingly demonstrated
that in many cases type-II superconductors can be described
by a field independent penetration depth. The present results
are also relevant for the interpretation of small-angle neutron
scattering (SANS) experiments in the mixed phase of type-II
superconductors, since the strong correlation between λ and ξ

is also present in Fourier components of the FLL [44].
We can conclude that in general a simultaneous

determination of ξ and λ from μSR spectra without additional
restrictions is not easy, regardless of the model used to describe
the vortex state. At high κ and low fields there is practically
no dependence of the spectra on ξ , and at high fields ξ is
strongly correlated with λ. As demonstrated in figures 3, 5,
and 7 this is independent of the value of κ and the model
used. It is important to add that in our analysis of the μSR
data using the advanced models, we used the same model for
the simulations and the analysis, which reduces systematic
errors to a minimum. In practice, there is often no adequate
model for the description of the experimental μSR spectra, as
for instance for unconventional superconductors such as the
cuprate superconductors. In this case additional difficulties
in the data analysis are expected. In the analysis of the

Figure 19. Contour plots of χ2 as a function of λ and ξ for μSR
spectra simulated using the parameters λ0 = 200 nm, ξ0 = 4 nm,
σg0 = 0.7 mT, 20 million counts, and b0 = 0.004, 0.02, and 0.1. The
results in (a) were obtained using the NGL model, and those in (b)
and (c) were obtained using the ML model. There is a strong
correlation of the fitted values of λ and ξ for high (b0 = 0.1) and
intermediate (b0 = 0.02) fields, but nearly no correlation at low fields
(b0 = 0.004). The statistically scattered minimal value of χ2 is
normalized to 1. The real values of λ and ξ are indicated by the
red point.

μSR spectra in section 5 we did not consider background
signals arising from impurity fractions/phases in the sample
and/or from muons stopping in the sample holder or other
parts of the spectrometer. These background signals may be a
hidden source of uncertainties in the determination of reliable
parameters from μSR spectra. The introduction of additional
fit parameters in the advanced models should be done only with
great care, since already the existing minimal set of parameters
of the models are, in general, difficult to extract.

6. Conclusions

We performed an analysis of the line shape of μSR spectra
of type-II superconductors in the mixed state simulated using
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four different models frequently adopted: (1) the modified
London model (ML), (2) the London model with Gaussian
cut-off (LG), (3) the analytical Ginzburg–Landau (AGL), and
(4) the numerical Ginzburg–Landau (NGL) model. The
dependence of the line shape on the penetration depth λ, the
coherence length ξ , the applied magnetic field B , and the
Gaussian smearing parameter σg is in agreement with previous
studies [35, 38, 4]. It is discussed under what conditions these
models can be used to describe the vortex state in extreme
type-II superconductors. As a result, the ML model can be
applied for fields b = B/Bc2 � 0.1 (Bc2 is the second
critical field). On the other hand, the AGL and LG models
can be applied over the whole range of fields, but in the range
b � 10−2−1 they systematically deviate from the NGL model.
It was shown that at low fields b � 10−3 there is practically no
dependence of the line shape on ξ . However, with increasing
field, there is a strong dependence of the line shape on both
λ and ξ , but the strong correlation between them makes it
almost impossible to determine λ and ξ simultaneously. This
is independent of κ = λ/ξ and the model used. Additional
restrictions for ξ (or λ) are needed to get rid of this correlation
for reasonable statistics. Furthermore, it was shown that it is
possible to determine λ and σg simultaneously, provided that ξ

is fixed and the correlation between them is not too strong. In
addition, it was demonstrated that the second-moment method
(SM), frequently used for μSR data analysis, may yield reliable
values for λ (within a few per cent) over whole field range
0 < b � 1, provided that the vortex lattice disorder is not
substantial. A multiple-Gaussian fit may give reliable values
for the second moment and may approximate well the local
magnetic field distribution in a type-II superconductor. In order
to substantiate these conclusions made above, we performed
virtual experiments by generating noisy μSR spectra with
known parameters. The results of a comprehensive analysis of
these μSR spectra are in full agreement with the conclusions
drawn above.
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